

CUG 2007 Proceedings 1 of 8

New Advances in the Gyrokinetic Toroidal Code and
Their Impact on Performance on the Cray XT Series

Nathan Wichmann, Cray Inc.; Mark Adams,
Columbia University; Stephane Ethier, Princeton
Plasma Physics Laboratory.

ABSTRACT: With the recent agreement to build the multi-billion dollar
international burning plasma experiment known as ITER, fusion simulations will
be growing dramatically in both complexity and size. The Gyrokinetic Toroidal
Code (GTC) is a 3D Particle-In-Cell code used for studying the impact of fine-
scale plasma turbulence on energy and particle confinement in the core of
tokamak fusion reactors. To tackle global ITER-size simulations with full kinetic
ion and electron physics, GTC will require new algorithms and supercomputers
will have to grow in capabilities. We will review recent code modifications made
to prepare for these new, exciting simulations and examine the performance of
GTC on both the Cray XT3 and Cray XT4 systems using the latest Cray tools.
Finally, we will look to the future and discuss plans for GTC and how that will
effect its performance on future computers.

KEYWORDS: Cray XT4, GTC, Gyrokinetic Toroidal Code, PIC, Fusion

Introduction
An effective method for analyzing the Vlasov-

Poisson system of equations, used in simulating
fully ionized plasmas, is the particle in cell (PIC)
method [6]. PIC methods evolve plasma dynamics
selfconsistently by alternately pushing charged
particles and solving the fields governed by
Maxwell’s equations. These methods enable the
study of plasma micro turbulence on global scales.
This micro turbulence (eg, scales a few millimeters)
is important in understanding transport phenomenon
in magnetically confined plasmas and is best
understood with a model that includes the effect of
gyro motion of charged particles in magnetic fields.
The basic idea behind the gyrokinetic simulation
method is to time average rapid precessing motions,
and only to push the guiding center motion for the
particles [3].

The gyrokinetic toroidal code (GTC) is an
implementation of the gyrokinetic PIC method used
for toroidal magnetic confined burning plasma

devices. GTC has been run effectively, with scaling
up to 32K cores, on all of the recent high
performance computational architectures. The GTC
programming models uses FORTRAN 95 and MPI,
and uses PETSc for the potential solves in Poisson’s
equation, which is discretized with linear finite
elements. Note, standard gyrokinetic ordering
implies that Poisson’s equation need only be solved
on each poloidal plane (perpendicular to the toroidal
direction in the torus), resulting in series of
independent 2D grid linear solves.

 Gyrokinetic PIC algorithm.
The basic PIC algorithm consists of depositing

the charge from the particles onto the grid,
computing and smoothing the potential, computing
the electric field and pushing particles with
Newton’s laws of motion. Figure 1 shows a
schematic of the PIC algorithm.

CUG 2007 Proceedings 2 of 8

Figure 1. Schematic of the PIC algorithm

Performance is governed by three basic types of

operations in this algorithm: 1) grids work (ie,
Poisson solve), 2) particle processing (eg, position
and velocity updates and 3) interpolation between
the two (ie, charge deposition and field calculation
in particle pushing). The dominate computational
cost depends on the number of particles use; the
delta F methods used in GTC the grid work is a
significant minority of the overall cost of the
simulation, the cost being dominated by particle
pushing. Earlier version of GTC parallelized the grid
work with a shared memory model (Open MP)
which is adequate if the grid is small enough and the
size of the shared address space for each poloidal
plane is large enough. As devices get larger, and
finer grids are desired for some types of simulations,
performance degrades with this model because more
address spaces are required for each plane, and the
larger grid that needs to be stored puts more pressure
on the cache and the entire memory system. This
performance degradation is due to increased pressure
on the cache in the charge deposition and redundant
work required in the solve, field calculation and
smoothing phases. The large fusion devices that now
need to be modeled and the small amount of shared
memory parallelism available on the newest large
machines (ie, Cray XT4 and IBM Blue Gene have
essentially no shared memory) requires a domain
decomposition of the grid with MPI parallelism.
This report discusses an BPI parallel decomposition
method for the grids in GTC.

GTC mesh and decomposition

Figure 2 shows a diagram of a, typical magnetic
fusion tokamak device. GTC stimulates the core
plasma; this is a, toroidal domain with magnetic
field lines with strong components in the toroidal
direction but with some component in the poloidal

plane resulting in a "twisting" magnetic field. GTC
generates meshes for poloidal planes where
Poisson's equation is solved. Thus, charge deposition
first interpolates a particles charge to the two planes
on each side of the toroidal domain in which it, is
located. This charge on the poloidal plane is then
interpolated onto the mesh points. Figure 3 (left)
shows a sample set of poloidal mesh points on a
poloidal plane. Figure 3 (right) shows a sample
global grid with the field line following grid lines.

Figure 2. Typical Tokamak Device

Figure 3. GTC Meshing

These planes form a natural 1D decomposition

of the computational domain, which is the primary
decomposition in GTC. The next section describes a
new 2D (radial) decomposition of the particles and
grid. This significantly complicates the parallel
model in that the grid on the poloidal plane must be
decomposed with explicit MPI parallel model.

CUG 2007 Proceedings 3 of 8

 Radial grid decomposition

The optimal grid decomposition for GTC is not
obvious in that several efficiencies are impacted by
the decomposition in different ways. Additionally,
the optimal method may be more complex to
implement than is necessary for acceptable perfor-
mance in the range of device sizes (up to 10K radial
grid cells) and the computers of interest in the next
several years (say 640K cores and 128 poloidal
planes, resulting in 4K processes per plane). The
first thing to note is that the particles move primarily
along the magnetic field lines and thus do not move
much in the radial direction. Thus, a radial
partitioning will result in minimal communication of
particles within the poloidal plane. A fully 2D grid
decomposition has the advantage that the same
decomposition can be used for the Poisson solver –
currently a separate unstructured 2D decomposition
is used. A difficulty with an unstructured 2D
decomposition, however, is that a structured
decomposition is essential required for fast
computation of a particle’s processor. Also a
structured 2D decomposition is not as efficient for
the solver as an unstructured one when large
amounts of parallelism are required. Given these
tradeoffs and the relative simplicity in
implementation we have opted for a structured 1D
radial grid decomposition for the grid/particle
computations and a 2D unstructured decomposition
for most of the grid computations (ie, the Poisson
solver).

Figure 4. GTC Grid of one Plane

Our approach is to assume that the density of

particles is a known function of radius (eg, a
constant) and to compute a nonoverlapping
decomposition of the domain (ie, a geometric
partitioning) that balances the particles exactly
(given the assumed distribution). Figure 4 shows a
small GTC grid of one plane (left) and a schematic
of a geometric partitioning with four radial domains
(processors or cores). Note the GTC computational
domain has an inner hole of radius “a0” and an outer
radius “a1” in Figure 4. The local domain, that needs
to be stored on each processor, must be extended to
accommodate the charge deposition. The particle
position stored in the gyrokinetic method is the
guiding centers of the particles – the gyrokinetic
formulation models the gyro motion as a charged
ring around particles guiding center. This charged
ring is discretized with a few points (eg, four) on the
ring; the charge at these points is deposited on the
grid with linear or bilinear interpolation. A small but
trivial optimization is to extend each radial domain
to line up with the radial grid points of the mesh
before the grid extension for the gyro radius is
computed. This enlarges the size of the domain that
a particle can occupy on each processor. This
(overlapped) radial decomposition defines the valid
region in which a particles guiding center must
reside for a processor to be able to, in general,
deposit the particle charge. That is, a particle’s
guiding center must be in this region for it to be
processed locally and must be sent to another
processor of it strays outside of this region.

New Baseline Benchmark

GTC has often been used to test out new
systems. Its scaling behaviour was well know and
the problem sizes could be easily adaptable to a wide
range of machine sizes and problems. Because its
behaviour was well understood, it provided good
feedback on the performance of anything from new
processor types to new interconnects. Results could
also be used to project out to much larger science
problems.

Today’s GTC has changed significantly in terms
of both capabilities and performance characteristics.
It can now simulate much larger fusion reactors
using more and different kinds of particles. It also
uses the PETSc solver, which can solve the Poisson
equation in parallel. Finally the new decomposition

CUG 2007 Proceedings 4 of 8

strategy eliminates the need to do a major
mpi_allreduce inside all the processor in a plane,
potentially dramatically changing the scaling to high
processor counts.

One of the early goals of this study was to define
a new baseline benchmark that not only preserved
the same beneficial characteristics of the old
benchmark, but also demonstrated the new
capabilities of the code, namely to simulate much
larger fusion devices. This benchmark would be
used act as a comparison across generations of both
machines and processors and project performance to
larger machines and problem sizes.

The new weak scaling benchmark that we
created “weakly” scales the problem in terms of both
the size of the reactor being simulated as well as the
total number of particles in the reactor. It runs on 64
to 16K processors, increase the processor count by a
factor of 4 with each step. We assume that one will
always use a constant decomposition of 64 slices in
the direction of the torus as the code is known to
scale well up to that point and the science rarely
allows one to go beyond that number of slices. If
necessary, it is still possible to reduce the number of
slices so one can run on fewer than 64 processors. A
critical feature of the benchmark is that at 16K
processors we are simulating a reactor the size of
ITER, an important reactor to simulate in the coming
years.

Scaling Results

Data was collected on the 11,508 socket
XT3/XT4 system at Oak Ridge National
Laboratories (ORNL) called jaguar. Each socket is a
dual core AMD Opteron running at 2.6 Ghz. The
main performance different between the XT3 and
XT4 half is the XT4 has approximately double the
main memory bandwidth. We collected data by
running the benchmark from 64-4096 processor
targeting either the XT3 or the XT4 exclusively, and
from 64 to 16K processors allowing the scheduler to
choose which processor type to use for any given
PE. Finally, we ran the old version of GTC up to 4K
processors, the highest it could go given the size of
the reactors being simulated.

Weak Scaling to 16K processors

GTC DEVICE WEAK SCALING

0

500

1000

1500

2000

2500

3000

3500

64 256 1024 4096 16384

NPES

T
IM

E

XT3 OLD GTC JAG XT4 T1 JAG XT4 T2

JAG XT3 T1 JAG XT3 T2 JAG XT3.5 T1

Figure 2: Weak Scaling Results

Figure 2 above shows the results of the weak
scaling study running on 64 to 16K processors. The
first observation is that the new version of GTC is
performing much better than the older version as the
processor count, and thus the device size grows.
This is primarily the result of the new decomposition
scheme’s and solver’s ability to distribute the work
associated with large grids. Scaling of the older
version of GTC stopped at 4096 PEs because it
could not run and ITER size device using 16K
processors.

Scaling to 4096 processors is good, but not as
good as hoped for. Time approximately doubles
while ideally it would stay flat. There does not
appear to be much difference between the XT3 and

CUG 2007 Proceedings 5 of 8

the XT4, an early indication that the majority of the
code is not sensitive to memory bandwidth. Moving
to 16K PEs time almost doubles again. While a
tremendous amount of science can be accomplished
at this number of PEs, performs has degraded
sufficiently that the we suspected a problem.

Component Times
To get a better idea of where the time was being

spent, we graphed the time spent in each of the
major components at a function of the number of
PEs. Figure 3 below shows the time spent in each
component. Not surprisingly, the pusher and charge
routines dominate the time. Each is increasing in
time as the number of PEs increase, but do not seem
to be enough to cause the scaling that we observed.
The shifter starts out very small relative the main
two components, but at the number of PEs increase
it begins to increase in time, with a dramatic jump at
4K PEs.

The shifter is where all of communication is
performed. There are two attributes to the
communication that could potentially cause the
behavior seen. First, it could be the result of the
communication itself, either because of network or
injection bandwidth contention. The second
possibility is that the communication effectively acts
like a barrier, if there was load imbalance in the
shifter or prior to the shifter, we could see it as extra
time spent in the shifter even though that was not the
true cause.

Component Times

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

10 100 1000 10000

NPEs

T
im

e

(s

e
c

o
n

d
s

)

PUSHER

SHIFT

CHARGE

POISSON

SMOOTH

FIELD

Figure 3: Component Times

Load Imbalance
To test whether the cause was the

communication or load imbalance, we inserted a

barrier just inside the shifter drive and then timed the
three components. The results can be seen in figure
4 below.

Phases of SHIFT

0.0

50.0

100.0

150.0

200.0

250.0

300.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500

TIME

N
P

E
S

SHIFTIR

SHIFTIBAR

SHIFTI

Figure 4: Breakdown of time in shift

All of the communication is done in shifti, the
routine that moves particles in the direction of the
torus, or shiftir, the routine that moves particles
radially. The two remain quite flat across all PE
counts. On the other hand, the barrier time is
climbing dramatically as PE count increases.

Since this barrier is not necessary for the
communication, the barrier itself and the time
associated with it could just have easily been
counted in the PUSHI routine. It is thus interesting
to replot the components graph with the barrier time
counted at part of PUSHI.

Component Times with Barrier in Pushi

0

100

200

300

400

500

600

700

10 100 1000 10000

NPES

T
im

e

PUSHER

SHIFT

CHARGE

POISSON

SMOOTH

FIELD

Figure 5: Component Times

Figure 5 now clearly shows that our problem is
actually in the main two computational kernels.
Both PUSHI and CHARGEI are increasing in time
as the number of PEs increase.

CUG 2007 Proceedings 6 of 8

Instrument PUSHI
With scaling apparently limited by load balance

problem in PUSHI, we decided to try collect as
much information as we could about that routine.
To do that, we collected Opteron counter data using
the Cray Pat performance tool. The first step was to
simply plot the time spent in PUSHI as a function of
PE number.

PUSHI Times

270

280

290

300

310

320

330

0 200 400 600 800 1000 1200

NPES

T
im

e

Figure 6: Time spent in PUSHI for different PEs

One can see in Figure 6 that there is about a 15-
20% difference in time depending on the PE
number. Initial examination of the FLOP count
cache hit rate data that they was a not sufficient
variable in computational or memory work load to
explain the variable in times. When we graphed the
number of TLB misses we did observe significant
variation.

Figure 7 shows almost a factor of four difference
in TLB misses depending on PE number, a variation
that could potentially explain the variation in time.
The question was if there was a correlation between
TLB misses and PUSHI time.

PUSHI TLB Misses

000.0E+0

50.0E+6

100.0E+6

150.0E+6

200.0E+6

250.0E+6

300.0E+6

350.0E+6

400.0E+6

0 200 400 600 800 1000 1200

NPES

T
L

B
 M

is
s
e
s

Figure 7: TLB misses on different PEs

Time vs TLB Misses

280

285

290

295

300

305

310

315

320

325

000.0E+0 100.0E+6 200.0E+6 300.0E+6 400.0E+6

TLB Misses

T
im

e

Figure 8: PUSHI Time and a function of TLB

misses

Figure 8 is a plot of PUSHI time and a function
of TLB misses for every PE. One can see a VERY
strong correlation. Any PE that took less than 100
million TLB misses ran in less than 290 seconds,
and any PE that took more than 300 M TLB misses
to more than 312 seconds.

With this latest data, much of the focus of
performance studies are trying to explain both the
frequency of TLB misses and the distribution of
TLB as a function of PEs. Unfortunately we do not
have a good explanation for this data. PUSHI does
contain some multi-dimensional gathers, but it is not
clear if that is the problem, of even if there might be
more than one problem.

CUG 2007 Proceedings 7 of 8

Multi Core versus Single Core

A clear trend in micro processor design is the
introductions of multi-core sockets. Today the XT4
is a dual core system, but it will be possible to
upgrade that to quad core Opterons once then
become available. While vendors are constantly
improving memory bandwidth, cores share all of the
memory bandwidth on and off the socket. Given the
trend toward more and more cores sharing memory
bandwidth, it is important to understand how one’s
program responds to a multi-core environment.

We wanted to run GTC in both a single core and
a dual core mode and examine the change in
performance. To do this we decided run a problem
on 512 Opteron sockets using only 1 core per socket,
and then to run the exact same problem using the
same number of socket but using both cores on
every socket. While we realized that by using twice
and many MPI processes to solve the same problem
we are also testing the ability of the code to
“strongly” scale, we feel that this is a reasonable
data point. Basically we want to know how much
faster our science will be solved as we get access to
more and more cores.

Relative DC vs SC performance for all components

179%

206%

93%

204%

140%

89% 86%

0%

50%

100%

150%

200%

250%

MAIN LOOP PUSHER SHIFT CHARGE POISSON SMOOTH FIELD

R
e

la
ti

v
e

 S
p

e
e

d

JAGUAR XT4 SC JAGUAR XT4 DC

Figure 9: Relative dual core speed up for each

component

Figure 9 shows the relative performance of the
entire code as well as broken down on a per
component basis. We see that the “MAIN LOOP”,
the entire computational portion of the code, gets a
very nice speed increase of 179% moving to dual

core from single core run. This is already at the high
end of the range of dual core speed up.

To really understand what is going on we want
to look at the speed up for each component. The
first order information is very good; both of the two
main computation kernels get an excellent speed up
of 200%. This is a strong indication that neither of
this routines are memory bandwidth intensity. The
only caveat might be that if we are limited by TLB
misses, and can eventually improve that TLB miss
rate, the routine might speed up to the point that they
start to pressure memory bandwidth.

The PETSc solver does get a respectable speed
up of 140%. In the case of the solver the speed
increase could be limited by local memory
bandwidth, network bandwidth, of scaling of the
algorithm itself. At this point we do not have
sufficient data to know which it is.

The SHIFT, SMOOTH, and FIELD all actually
go slower in dual core mode. In the chase of SHIFT,
it is this is not surprising, the kernel is either moving
data around locally, or communicating that across
the network. In either case both cores will be
competing for a shared resource. We have not
examined SMOOTH of FIELD, but this data
strongly suggests that they are bandwidth limited.

Taken together, Figure 9 is telling us that we
should be able to utilize quad core systems. The
main computations should get a very nice speed up.
This figure also contains a warning. As the number
of cores continue to increase, routines that today are
not considered important, could dominate in the
future if memory bandwidth does not increase or if
corrective action is not taken.

CUG 2007 Proceedings 8 of 8

Future Work

The work done for this paper thus far has been
extremely valuable. We have established a new
baseline benchmark, collected scaling data, and
begun the process of predicting the performance of
the code on future systems. That said there is still
much work to be done. Below is a list of what we
hope to study over the next several months.

• Explain and eliminate the load imbalance in
PUSHI. If TLBs are really the problem, what is
the fundamental cause? How do we ultimately
fix the problem so that we not only scale better,
but hopefully single CPU performance
improves.

• Switch back to 32 precision for the most of
the computation in GTC. While the PETSc
solver needs to remain a 64 bit precision solver,
the rest of GTC can be computed using only 32
bit floats. Advantages include potentially better
TLB performance, less memory bandwidth
consumed, better utilization of the cache, and
double the peak performance of the SSE
floating point units.

• Examine the PETSc solver for performance
improvements. We did not directly examine
the performance of the PETSc solver in this
study, but the Dual Core study showed the
PETSc performance may become more
important in the future. We plan on working
with the Cray Scientific Libraries group to
improve the performance of the solver.

• Examine the use of OMP. With the advent
of multi-core chips there is a renewed interest
in OpenMP to help everything from attaching
different levels of parallelism to reducing the
number of messages on the network. Will
OpenMP make sense for GTC?

• Other Weak Scaling Studies. We plan on
performance other weak scaling studies to
enhance our ability to predict the performance
of future science problems. One in particular is
simulating the ITER reactor with trillions of
particles. The new code makes this plausible,
but how will it perform?

Conclusions

The new GTC provides a substantial increase in both
performance and scientific capabilities. It can run larger
science problems then ever before and the new PETSc
solver allows one to perform more complex simulations.
While performance for large devices is much better than
the older version and scaling is good to 16K cores, there
is still a strong desire to improve scaling further. Finally,
GTC performs very will on Dual Core Opteron chips, and
should be able to continue to perform well as the number
of cores per socket increases.

About the Authors

Nathan Wichmann is currently a Senior
Applications Engineer in the Cray Supercomputing
Center of Excellence working with Oak Ridge
National Laboratories. During his nearly ten years
at Cray Inc. he has work on a range of applications
include automotive, climate and weather, and fusion
research. Nathan has a particular interest in
compilers and processor micro-architecture and has
worked in determining the direction of compiler and
processor development. He can be reached at
wichmann@cray.com.

Dr. Mark Adams is Research Scientist in the
Applied Physics and Applied Mathematics
department at Columbia University. His career has
focused on high performance finite element
simulation systems, in particular, parallel multigrid
equation solvers for large unstructured finite element
problems in solid mechanics and plasma physics. He
has a BA and a Ph.D, both from U.C. Berkeley

Dr. Stephane Ethier is a Computational Physicist in
the Computational Plasma Physics Group at the Princeton
Plasma Physics Laboratory (PPPL). He received a Ph.D.
from the Department of Energy and Materials of the
Institut National de la Recherche Scientifique (INRS) in
Montreal, Canada, and an M.Sc. from the University of
Montreal, Canada. His current research involves large-
scale gyrokinetic particle-in-cell simulations of
microturbulence in magnetic confinement fusion devices.
This work is funded in part by three DOE SciDAC
projects and by the DOE Plasma Sciences Advanced
Computing Institute (PSACI).

